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Abstract

The interplay among commonly used physicochemical
properties in drug design was examined and utilized to
create a prospective design tool focused on the align-
mentofkeydruglike attributes.Usinga set of sixphysico-
chemical parameters ((a) lipophilicity, calculated parti-
tion coefficient (ClogP); (b) calculated distribution
coefficient at pH=7.4 (ClogD); (c) molecular weight
(MW); (d) topological polar surface area (TPSA);
(e) number of hydrogen bond donors (HBD); (f) most
basic center (pKa)), a druglikeness central nervous
system multiparameter optimization (CNS MPO)
algorithm was built and applied to a set of marketed
CNS drugs (N=119) and Pfizer CNS candidates (N=
108), as well as to a large diversity set of Pfizer pro-
prietary compounds (N = 11303). The novel CNS
MPO algorithm showed that 74% of marketed CNS
drugs displayed a high CNS MPO score (MPO desir-
ability score g 4, using a scale of 0-6), in comparison
to 60% of the Pfizer CNS candidates. This analysis
suggests that this algorithm could potentially be used
to identify compounds with a higher probability of
successfully testing hypotheses in the clinic. In addi-
tion, a relationship between an increasing CNS MPO
score and alignment of key in vitro attributes of drug
discovery (favorable permeability, P-glycoprotein (P-gp)
efflux, metabolic stability, and safety) was seen in the
marketed CNS drug set, the Pfizer candidate set, and
the Pfizer proprietary diversity set. The CNS MPO
scoring function offers advantages over hard cutoffs or

utilization of single parameters to optimize structure-
activity relationships (SAR) by expanding medicinal
chemistry design space through a holistic assessment
approach. Based on six physicochemical properties
commonly used by medicinal chemists, the CNS MPO
function may be used prospectively at the design stage
to accelerate the identification of compounds with
increased probability of success.
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T
he high cost of drug discovery combined with
high attrition rates of preclinical and clinical
candidates has prompted the pharmaceutical

industry to take action to improve the survival of their
development candidates and increase the speed atwhich
these candidates are identified (1). Ideally, medicinal
chemists would like to increase the probability of pro-
spectively designing molecules that survive preclinical
safety studies and that possess optimal pharmacokinetic
and pharmacodynamic properties to test hypotheses in
the clinic.We became interested in the development of a
prospective design tool based on key physicochemical
properties that would enable a multiparameter optimi-
zation of druglike properties, with the goal of increasing
flexibility in design and the probability of identifying
candidates with optimal pharmacokinetic and safety
profiles. Ultimately, it was envisioned that such a pro-
spective design tool, together with other contemporary
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design concepts (2-7), would help prioritize design
ideas and decrease the number of design cycles, accel-
erating the identification of candidates with enhanced
survival.

In the preceding paper, we described a thorough
analysis of 119 central nervous system (CNS) marketed
drugs (drug set or drugs) and 108 Pfizer CNS candidates
(candidate set or candidates) (8).We examined six funda-
mental physicochemical properties associated with these
two sets of compounds: (a) lipophilicity, calculatedparti-
tion coefficient (ClogP); (b) distribution coefficient at
pH=7.4 (ClogD); (c)molecularweight (MW); (d) topo-
logical polar surface area (TPSA) (9); (e) number of hydro-
genbonddonors (HBD); (f )most basic center (pKa). The
CNS drug space defined by these six physicochemical
properties is quite broad, but our scholarship pointed to
optimumranges for eachof theseproperties.Theanalysis

of the drugs and candidates clearly showed that the drug
set had a high alignment of key attributes including high
passive permeability (Papp), low P-glycoprotein (P-gp)
efflux (10), low unbound intrinsic clearance (CLint,u)
measured by human liver microsomes, (11, 12) and high
cell viability in a transformed human liver epithelial cell
line (THLECv).Herein, we report our efforts to develop
a CNS MPO design tool that does not focus on hard
cutoffs or single endpoints but utilizes the above set of six
fundamental physicochemical properties to, in a prob-
abilistic manner, prospectively align druglike attributes
such as high permeability, low P-gp efflux liability, low
metabolic clearance, and high safety into one molecule.

Designing for optimal pharmacokinetic and safety
properties inonemoleculebyutilizinghard cutoffs or by
focusing on a single property may restrict design space
andmay not align multiple attributes at once. Recently,

Figure 1. (A) Distribution of drugs and candidates in the ClogP and TPSA space. Orange lines represent the cutoff values for ClogP (3) and
TPSA (75 Å2) relative risk factors. Compounds are colored by compound type: drugs are shown in light green and candidates in dark blue.
Compounds in the lower right quadrant (ClogP < 3 and TPSA > 75 Å2) are considered to have lower risk for adverse safety findings. (B)
Mosaic plots of drugs and candidates. Green boxes represent the percentage of compounds within the low-risk safety space (ClogP < 3 and
TPSA > 75 Å2), and the red boxes represent the compounds in higher risk space (ClogP > 3 and TPSA < 75 Å2). The number in each box
reflects the percentage of compounds in that category.
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Hughes et al. examined physicochemical properties
associated with adverse events observed during in vivo
toleration (IVT) studies (13). These authors concluded
that compounds with both high lipophilicity (ClogP>
3) and low polarity (TPSA<75 Å2) (3 and 75 relative
risk factors) had a significantly increased relative safety
risk (6:1) of showing adverse outcomes in IVT studies,
in comparison to compounds that exhibited both
low lipophilicity (ClogP<3) and high polarity (TPSA
>75 Å2). An analysis of the drug set using the 3 and 75
relative risk factors (Figure 1A,B) showed that almost
half of the CNS drugs (44%) reside in the higher risk
space (upper left quadrant), yet these drugs overcame
attrition risks and were marketed. In contrast, far fewer
CNS drugs (11%) populate the lower risk space (lower
right quadrant), presumably due to the challenge of
routinely achieving optimal brain penetration in such a
high polarity space. The plot of the candidate set is also
shown for comparison in Figures 1A,B; a trend similar
to that of the drug set is observed. If the ClogP> 3 and
TPSA < 75 Å2 end points were to be used as strict
cutoffs, the CNS chemical space that a drug designer
could explore would be significantly restricted and
would lead to undue hardship in the discovery of CNS
drugs. Clearly, we need to understand the properties
associated with CNS drugs that allow them to achieve
full alignment of key druglike attributes yet overcome
the safety odds in the higher risk space (ClogP> 3,
TPSA < 75 Å2). An equally important objective is to
successfully move CNS design into the more favorable
safety risk space (ClogP < 3, TPSA > 75 Å2) while
preserving CNS penetration.

Lipophilicity as defined by ClogP has been a design
component utilized by medicinal chemists for decades.
The advent of the Rule of Five reinforced the impor-
tance of lipophilicity in drug design and encouraged
medicinal chemists to target molecules with reduced
ClogP (14). Reducing ClogP has been reported to not
only improve safety outcomes (13) but also reduce
human liver microsome (HLM) clearance (15). ClogP
can be utilized to improve some end points quite
successfully, but it falls short of aligningall of thedesired
ADME (absorption, distribution, metabolism, and
elimination) and safety attributes. For example, with
the diverse pool set of Pfizer compounds (see discus-

sion section for details of the diverse pool), plotting
P-glycoprotein (P-gp) liability versus ClogP reveals that
there is little correlation between lowering ClogP and
P-gp efflux liability for ClogP values e 5, as shown in
Figure 2. A single parameter may thus fail to simulta-
neously alignmultiple attributes, reinforcing the need to
leverage multiple physicochemical properties of a mole-
cule in order to achieve the optimumbalance of ADME
and safety properties.

Based on the above analyses, in this paper, we
examine whether an increased probability of identifying
aligned druglike attributes can be achieved using a
multiparameter approach. First, we discuss the key
components of the CNS MPO and its transformation
functionsbasedon the six fundamental physicochemical
properties that are commonly utilized by medicinal
chemists in compound design. Second, we examine the
CNSMPO score distribution of the drug and candidate
sets to determine whether the drug set can distinguish
itself from the candidate set based on the MPO algo-
rithm. Third, we look at the potential utility of the CNS
MPO algorithm as a design tool. In particular, we
investigate whether increasing the CNSMPO desirabil-
ity score for the drugs, candidates, and a large diverse
set of proprietary Pfizer compounds leads to an
increase in the probability of having desired in vitro
ADME and safety attributes [e.g., high passive perme-
ability (Papp), (10) low P-gp efflux (10), low clearance
(CLint,u) (11, 12), high cell viability (THLE Cv) (8), or
low inhibition of dofetilide binding (16)]. Fourth and
last, using all three sets of compounds, we examine
whether an increase in the CNSMPO desirability score
results in a higher probability of identifying compounds
with aligned ADME attributes in one molecule. In this
section, we also assess the ability of the tool to increase
design space and flexibility compared with the use of
hard cutoffs for individual physicochemical properties.

Results and Discussion

A CNS Multiparameter Optimization and
Desirability Score

Multiparameter optimization methods are com-
monly used to assess and balance the effects of several
variables, weighted based on their importance to the

Figure 2. The distribution of binned P-gp efflux ratios (ER) obtained from theMDCK-MDR1 assay (low P-gp liability, ERe 2.5, green; high
P-gp liability, ER > 2.5, red) for the diverse pool set across a range of ClogP values. The number of compounds represented by each pie is
shown above the pie graph.
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overall objective. The term “desirability function” was
first introduced by Harrington in the context of his
transformationofmultiple attributes into dimensionless
scales, which were then arithmetically or geometrically
combined into a single score (16).The technique has also
been applied to library designs (17, 18) and the objective
function for a genetic algorithm-based molecular dock-
ing software (19).

In this work, we examined a variant of Harrington’s
optimization method involving a summation of the
individual components to yield a composite desirability
score. Each component of a desirability function is a
transformed function and is usually defined by a series
of inflection points delineating the desirable region(s)
and undesirable region(s) of properties (x variable) with
a certain desirability score (y variable) as shown in
Figure 3. For example, amonotonic decreasing function
is defined by adesirable region if the propertyxex1 and
an undesirable region for x > x2. A linear transfor-
mation is applied between the two inflection points
(x1 < x e x2). Similarly, a hump function is defined
by two undesirable regions and one desirable region,
with linear transformation between the inflection points
(Figure 3B). The overall desirability function is the sum
of all transformed components (see Methods section).
Utilization of a summation approach prevents a severe
penalty in overall desirability score if one parameter is
outside the desired limits set by the user, in comparison
to a multiplicative approach, which could result in an
overall desirability score at or near zero if one parameter

was severely unfavorable. The summation approach
thus avoids the hard cutoff trap and enables the expan-
sion of desirable design space.

TheCNSMPOscore was built using six fundamental
physicochemical properties (ClogP, ClogD, MW,
TPSA, HBD, and pKa) commonly employed in com-
pound design to address specific ADME and safety
issues. A monotonic decreasing function was used for
ClogP, ClogD,MW, HBD, and pKa, and a hump func-
tionwas used for TPSA. All physicochemical properties
were weighted equally with a desirability score ranging
from 0.0 to 1.0 for each property. The most desirable
and least desirable ranges for each physicochemical
property are given in Table 1. Transformed values
(T0) of the six properties were determined for each
compound, and the summation of the transformed
component score yielded the final “CNS MPO” desir-
ability score, which can range from zero (0) to six (6). For
each physicochemical property, the inflection points that
define optimal, less optimal, and undesirable ranges
were selected based on the authors’ and Pfizer scientists’
medicinal chemistry experiences (Figure 4). The inflec-
tion point selections were validated using knowledge of
property distribution space for CNS drugs highlighted in
the preceding publication (8) and other literature sources
referenced above. Individual drugs and candidates were
mapped to their corresponding property; within each of
the physicochemical property plots, as can be seen in
Figure4, compoundspopulatedmostof the rangeof each
function.

Figure 3. Desirability component functions are defined by a set of inflection points; higher y values represent more desirable regions: (A) a
monotonic decreasing function is defined by two inflection points; (B) a hump function is defined by four inflection points.

Table 1. The CNS MPO Properties, Functions, Weighting, Value Range and Parameter Ranges

properties transformation (T0) weight more desirable range (T0 = 1.0) less desirable range (T0 = 0.0)

ClogP monotonic decreasing 1.0 ClogP e 3 ClogP > 5

ClogD monotonic decreasing 1.0 ClogD e 2 ClogD > 4

MW monotonic decreasing 1.0 MW e 360 MW > 500

TPSA hump function 1.0 40 < TPSA e 90 TPSA e 20; TPSA > 120

HBD monotonic decreasing 1.0 HBD e 0.5 HBD > 3.5

pKa monotonic decreasing 1.0 pKa e 8 pKa > 10
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Individual component scores and overall CNSMPO
desirability scores for several drugsare shown inTable 2.
As an example, zolpidem’s overall CNS MPO desir-
ability score (5.4) is a composite of optimal values for
threeof the six properties (MW,HBD,andpKa) and less
optimal values for the remaining three properties
(ClogP, ClogD, and TPSA). It is crucial to emphasize
that while the overall composite CNS MPO score is
important, individual transformed values (T0) are
equally valuable, because they can highlight potential
problems a compoundmay encounter. For instance, if a
compound has a less optimal or undesirable T0_ClogP
score, a medicinal chemist would be alerted to its
potential for enhanced metabolic liability and increased
risk of safety issues and could work to optimize both the
holistic and individual scores. Among the 119 drugs
examined, aniracetam (nootropic), caffeine (stimulant),
flumazenil (benzodiazepine antagonist), and zaleplon
(sedative/hypnotic) had perfect CNSMPO scores of six.
For the numerical values for the full drug set, see the
Supporting Information.

CNSMPOprovides amethod for balancingmultiple
variables without the penalty of hard cutoffs, because
there are countless ways to arrive at a similar score. This
is well illustrated utilizing three Pfizer CNS candidates
in development: PF-02545920 (phosphodiesterase 10

(PDE10) inhibitor), PF-03654746 (histamine H3 antag-
onist), and PF-04447943 (phosphodiesterase 9 (PDE9)
inhibitor); see Table 3. The PDE10 inhibitor has a CNS
MPOscore of 4.6, theH3 receptor antagonist has aCNS
MPO score of 4.9, and the PDE9 inhibitor has a CNS
MPO score of 5.2. All three compounds have success-
fully completed regulatory toxicity studies, as well as
first-in-human studies, and have entered phase 2 trials,
suggesting that they have suitable physicochemical
properties and appropriately aligned druglike attributes
to test their biologicalmechanisms in the clinic.All three
candidates have aCNSMPOscore>4.5, yet they arrive
at this highCNSMPOdesirability score inverydifferent
ways, reflecting the difference in characteristics for these
molecules (Table 3).ThePDE10candidatehas 3out of 6
properties in optimal property space: TPSA (52.8 Å2),
HBD (0), andpKa (4.3), all receiving a full property (T0)
score of one. The other three properties are in less
optimal space: ClogP (3.8), ClogD (3.5), and MW
(392.5), with transformed values in the range of 0.2 to
0.8. Summation of the individual property values yields
the overall CNS MPO desirability score of 4.6. In
contrast, the H3 receptor antagonist displays optimal
lipophilicity (ClogP=2.4, ClogD=0) andMW (322.4)
properties but occupies less favorable property ranges
forTPSA (32.3 Å2),HBD (1), andpKa (9.2). Finally, the

Figure 4. Each plot represents one of the six physicochemical property desirability functions used to generate the CNSMPO. Each point on a
plot represents a drug or candidate: (A) ClogP; (B) ClogD; (C) MW; (D) TPSA; (E) HBD; (F) pKa. The most desirable (T0 = 1.0) and least
desirable (T0 = 0.0) inflection points are marked with green and red arrows, respectively. A linear function was used to determine the
desirability scores between the inflection points.
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PDE9 candidate resides in optimal property space for
ClogP (-1.5), ClogD (-0.7), and pKa (7.9) but in
slightly less optimal space with regard to TPSA (101.9
Å2), MW (395.4), and HBD (1). This triad of com-
pounds also showcases how the CNS MPO algorithm
avoids hard cutoffs: if strict limits for ClogP or ClogD
had been set ate3.0 or design was confined to low-risk
space as defined by the 3 and 75 relative risk factors (13),
the PDE-10 inhibitor and the H3 antagonist, respec-
tively, would have not been synthesized. Similarly, the
PDE9 inhibitor would have not been prepared if a hard
cutoff for TPSA (e100 Å2) had been employed to
increase brain penetration. The CNS MPO algorithm
creates flexibility in design, expands drug design space,
andmay allow for the prospective design of compounds
that occupy diverse property space while maintaining
desirable attributes including CNS penetration.

Drug Space
Utilizing the CNS MPO algorithm, we plotted the

desirability scores for the drug and candidate sets
(Figure 5). We had hypothesized that the drugs would
distinguish themselves from the candidates and that

these two sets of compounds would have different
overall distribution ofMPO scores, given that a number
of the candidates had been eliminated along the drug
development pathway (safety, tolerability, pharmaco-
kinetics, etc.). Figure 5 shows that drugs are more likely
distributed in higher MPO bins than candidates ( p =
0.0249, one-degree freedomMantel-Haenszel χ2 test of
two by five contingency table). A significantly higher
percentage of drugs (74%) had MPO scores >4 in
comparison to the candidates (60%) ( p = 0.0275).
The CNS MPO algorithm clearly distinguished the
CNS drugs from the candidate set in distribution of
the desirability scores, suggesting that use of such an
algorithm may increase the probability of identifying
compounds with increased survival. CNS drugs with
exceptionally high MPO scores (>5) were chemically
diverse and represented a range of mechanistic classes
including GPCRs, enzymes, ion channels, and trans-
porters (see Supporting Information for detailed in-
formation).

In an effort to further understand the potential utility
of the CNS MPO algorithm, we sought to answer a
fundamental question: “Does an increase in the CNS

Table 2. CNS MPO Scores and Individual Transformed Scores (T0) for Selected Drugs

drugs T0_ClogP T0_ClogD T0_TPSA T0_MW T0_HBD T0_pKa CNS MPO

alprazolam 1.00 0.75 1.00 1.00 1.00 1.00 5.8

zolpidem 0.99 0.57 0.88 1.00 1.00 1.00 5.4

paroxetine 0.38 1.00 0.99 1.00 0.83 0.00 4.2

risperidone 1.00 0.86 1.00 0.64 1.00 1.00 5.5

methylphenidate 1.00 1.00 0.92 1.00 0.83 0.00 4.8

Table 3. A CNS MPO Composite Score and Component Score Comparison of Three Pfizer CNS Candidates in
Development
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MPO score result in a higher probability of identifying
compounds with druglike attributes?” If this proved to
be true for the drug and candidate sets, then this
algorithm could be useful in the prospective design of
new compounds. Furthermore, medicinal chemists
could use this algorithm in additional ways including
the triage of high-throughput screening (HTS) hits or
the evaluation of chemical matter in patents around a
particular target, without running a single in vitro assay.
The ADME and safety end points that we evaluated in
vitro were (a) passive apparent permeability (Papp),
assessed in an assay utilizing the Madin-Darby canine
kidney (MDCK) cell line, (b) P-gp efflux liability,
assessed in an assay utilizing an MDCK line stably
transfected with the MDR1 gene, which expresses a
functionally active human P-gp, (c) metabolic stability
(CLint,u), assessed in a human liver microsome (HLM)
stability assay, and (d) general cellular toxicity, assessed
in a THLE Cv assay. For each of the end points
examined, we compared CNS MPO desirability scores
for the drug and candidate sets. The CNS MPO desir-
ability scores were broken up into three different groups
(e 4, 4-5, and >5) to evaluate the ability of the
algorithm to identify compounds with the desired drug-
like attributes: high Papp (Figure 6A), low P-gp efflux
(Figure 6B), lowCLint,u (Figure 6C), andhighTHLECv
(Figure 6D).

The first ADME end point against which the CNS
MPO desirability score was evaluated was passive per-
meability. As theCNSMPOdesirability score increased
from e 4 to 4-5 and to >5, so did the odds of
identifying compounds with highPapp for both the drug
and candidate sets (Figure 6A). From theMDCKassay
data, we classified the permeability of amolecule as low,
moderate, or high based on its Papp rate (expressed as
10-6 cm/s) as follows: Papp e 2.5, low permeability;

2.5<Pappe 10,moderate permeability; andPapp>10,
high permeability. In the drug set, 96% of the com-
pounds with CNSMPO score>5 had highPapp values.
In contrast, only 29% of the drugs with low CNSMPO
scores (CNS MPO e 4) had high Papp values. Similar
trends were observed for Papp values for the candidates,
although the drug set generally had a higher percentage
of high passively permeable compounds within each
CNS MPO range examined. An increasing CNS MPO
desirability score does enhance the odds of identifying
compounds with the desired attribute of high passive
permeability as measured by the in vitro MDCK assay.

The second ADME end point against which the
CNS MPO desirability score was evaluated was P-gp
liability (Figure 6B). The MDCK-MDR1 cell line is
used in a bidirectional evaluation of permeability
[apical to basolateral (AB) and basolateral to apical
(BA)] to generate a final efflux ratio (BA/AB) value. A
compound with an efflux ratio (ER) e 2.5 is not
considered to be a P-gp substrate and may display
low P-gp efflux liability. Once more, as the CNSMPO
desirability score increased so did the odds of identify-
ing compounds with low P-gp liability. In the drug set,
91% of the compounds with CNSMPO score >5 had
low P-gp liability in comparison to 42% of the com-
pounds with scores e 4. A similar trend was observed
for the candidates.

The third and last ADME end point examined was
metabolic stability (Figure 6C). Theunbound clearance,
CLint,u, is used to evaluate P450-mediated clearance; a
compound is expected to have low clearance if CLint,ue
100 mL/(min 3kg) and high clearance if CLint,u > 100
mL/(min 3 kg) (8). Compounds with high CNS MPO
desirability scores (>5) had significantly higher odds of
displaying desired low CLint,u, 92% and 72% of the
drugs and candidates, respectively. Compounds with

Figure 5. CNSMPO scores for drugs (green bars) and candidates (blue bars) were plotted from low to high CNSMPO score along the x-axis.
The compound count for each bin appears above the bar.
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low CNS MPO desirability scores (e 4) had a lower
probability of displaying lowCLint,u, with only 14%and
18% of the drugs and candidates, respectively, in this
category.

The final end point examined versus the CNS MPO
score was general cellular toxicity, measured by the
THLE Cv assay (an in vitro safety assay). Cell viability
was measured by ATP depletion, with the dynamic
range of the assay encompassing IC50 values from single
digit micromolar to g300 μM. (8). The higher the IC50

value, the lower the cell toxicity is and the greater the cell
viability is (desired attribute). The IC50’s were classified
as follows: THLE Cve 100 μM (low cell viability) and
THLECv>100μM(high cell viability). In thedrug set,
compounds with high CNS MPO scores (>5) were
considerably more likely to exhibit high cell viability in
comparison with compounds having low CNS MPO
scores (e 4): 93% versus 45%, respectively. Similar
findings (82% versus 51%) were obtained for the can-
didate set (Figure 6D).

This analysis indicates that higher CNS MPO desir-
ability scores enhance the odds of identifying com-
pounds in the drug and candidate sets with druglike
ADME and safety attributes such as high passive

permeability, low P-gp liability, low clearance, and high
cellular viability.

In an effort to assess the general utility of the CNS
MPO algorithm, we also evaluated a large pool of
proprietary Pfizer compounds, consisting of 11 303
compounds that extensively cover property space de-
fined by ClogP, ClogD, TPSA,MW,HBD, and pKa, as
shown in Figure 7A (ClogP vs TPSA), Figure 7B
(ClogD vs MW), and Figure 7C (HBD vs pKa). In
Figure 8, the CNS MPO desirability scores calculated
for the diverse pool set are plotted from low (e1) to
high (>5) desirability for each of the following ADME
and safety end points: Papp (Figure 8A), P-gp efflux
(Figure 8B), CLint,u (Figure 8C), and inhibition of
dofetilide binding (Dof ) as a surrogate indicator of
hERG potassium ion channel effects (Figure 8D). The
ADME end points were assessed in vitro in the same
manner as describedabove for thedrugs and candidates.
In vitro dofetilide inhibition data was obtained by
measuring competitive binding to the dofetilide bind-
ing site in HEK-hERG membrane homogenates (20).
The output examined was percent inhibition (% inh) of
dofetilide binding, where the lower the value, the lower
the risk of interference with the hERG cardiac ion

Figure 6. Distribution of ADME and safety attributes for drugs and candidates as a function of the CNS MPO score: (A) binned values for
Papp obtained from theMDCK assay, color-coded by high permeability (Papp> 10, green), moderate permeability (2.5< Pappe 10, yellow),
and low permeability (Pappe 2.5, red) in units of 10-6 cm/s; (B) binned values for P-gp efflux liability obtained from theMDCK-MDR1 assay,
color-coded by low P-gp liability (ERe 2.5, green) or high P-gp liability (ER> 2.5, red); (C) binned values for clearance (CLint,u) assessed in a
human liver microsome stability assay, color-coded by low clearance (CLint,u e 100 mL/(min 3kg), green) and high clearance (CLint,u > 100
mL/(min 3kg), red); (D) binned values for THLECv asmeasured by anATPdepletion assay, color-coded by high cell viability (IC50>100 μM,
green) and low cell viability (IC50 e 100 μM, red). Pie charts are color-coded based on the value of the bin, from desirable values (green) to
undesirable values (red), and sized by the number of compounds in each pie, which is shown above each pie graph.
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channel. Results were classified as follows: % inh e 15
as low-risk, 15 <% inh e 50 as moderate risk, and %
inh >50 as high-risk. As the CNS MPO desirability
score increased from low (e 1) to high (>5) scores, a
continuous improvement in the odds of identifying
compounds with druglike attributes (high Papp, low
P-gp efflux, lowCLint,u, and lowDof risk)wasobserved.
For example, compoundswith aCNSMPOscore ofe 1
had none of the most desired ADME attributes (high
Papp, low P-gp liability, and low CLint,u). Compounds
with CNS MPO scores in the range from 1 to e 2
showed a small increase in the number of compounds

with desired ADME attributes (high passive permeabil-
ity 7%, low P-gp liability 21%, and low CLint,u 11%).
Progressive improvement in the identification of addi-
tional compounds with the most desired attributes was
observed for compounds with CNSMPO scores from 2
to 3, 3 to 4, and 4 to 5. Finally, compounds with a CNS
MPO score >5 had the highest proportion of the most
desired attributes: high Papp 82%, low P-gp liability
78%, lowCLint,u 69%, and lowDof liability 67%.Thus,
the CNS MPO desirability score does increase the
probability of identifying compounds with the desired
in vitro ADME and safety attributes in a large and

Figure 8. Distribution of ADME and safety attributes as a function of the CNS MPO desirability score for a large and diverse set of com-
pounds. Binned values are shown for (A) passive permeability, Papp; (B) P-gp liability efflux, P-gp; (C) metabolic stability, CLint,u; and (D)
inhibition of dofetilide, Dof. Pie charts are color-coded based on the value of each bin, fromdesirable values (green) to undesirable values (red),
and the number of compounds in each pie is shown above the respective pie graph.

Figure 7. Plots of property space for the diverse pool set, where each square represents a compound: (A) plot of ClogP vs TPSA; (B) plot of
ClogD vs MW; (C) plot of HBD vs pKa, where HBD are jittered.
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diverse set, reinforcing the potential general utility of
this tool beyond the CNS area.

We then examined whether an increase in the CNS
MPOdesirability scores for the three sets of compounds
(drugs, candidates, and diverse pool) translated to a
greater likelihood of aligning desired ADME attributes
(high Papp, low P-gp efflux, and low CLint,u) in one
molecule. In the preceding paper, we demonstrated that
drugs show a higher alignment of desired ADME (and
safety) attributes in one molecule compared with candi-
dates, suggesting that such an alignment may be a
differentiating factor in survival to the market (8).
Significantly, as the CNS MPO desirability score in-
creased from low (e 1) to high (>5), so did the odds of
identifying compounds that aligned all three ADME
properties in one molecule (Figure 9). Out of the 68
drugs for which all three end points were measured, five
compounds had CNS MPO desirability scores of e 3
and none of these aligned all three ADME attributes. In
fact, none of these compounds had any of the most
desired ADME attributes. In the group of drugs with
CNSMPOdesirability scores from 3 toe 4, 25% of the
compounds attained full alignment of the three ADME
attributes, with the rest displaying alignment of 2 out of
3 attributes (13%), 1 out of 3 attributes (50%), or no
alignment (13%). Moving to drugs with CNS MPO
desirability scores >4, a significant increase (p =
0.0002, two-tailed Fisher’s exact test) in the number of
compounds with full alignment of desired ADME
attributes was observed, and 77% of the drugs with
CNS MPO desirability scores of >5 showed full align-
ment. Examination of both the candidate and general
pool sets yielded similar findings: as the CNS MPO
desirability score increased so did the percentage of

compoundswith aligned attributes. AtCNSMPO scores
>5, 54% and 49% of candidates and compounds in the
diverse pool, respectively, showed alignment of all three
attributes.Our analysis thus indicates that theprobability
of identifying compounds with aligned attributes in-
creases with increasing CNSMPO desirability scores.

As stated in the introduction, one of our main goals
was to create a new multiparameter optimization algo-
rithm that would promote flexibility in design and
expand design options beyond the use of single para-
meters or hard cutoffs for single ormultiple parameters.
To assess this design aspect, we examined the subset of
compounds in the diverse set that exhibited full align-
ment of ADME properties (2995 out of 11 303
compounds) for their distribution against each of the
six physicochemical properties in relationship to their
CNS MPO desirability scores (Figure 10). As shown in
each of the six plots, as theCNSMPOdesirability scores
increased, the density of compounds with full alignment
of ADME attributes (high Papp, low P-gp liability, and
low CLint,u) also increased. If hard cutoffs for one or
several of the physicochemical properties had been
applied at the design stage, numerous desirable com-
poundswouldhave been eliminated fromconsideration,
resulting in significant lost opportunity (Figure 10). For
example, if ClogP e 3 had been included as a require-
ment indesign, approximately 30%(843 compounds) of
the compounds with full ADME alignment would have
not been synthesized. Overall, the CNSMPO desirabil-
ity scores enable more physicochemical flexibility and
expand design space, while enhancing the odds of
identifying compounds with a higher probability of
aligningkeydruglike properties as theCNSMPOscores
increase. TheCNSMPOalgorithmmay thus be a useful

Figure 9. Pie chart of binned values for alignment of desired ADME attributes: high Papp, low P-gp, and low CLint,u. Color-coding for desired
ADMEattributes: 3/3 (green), 2/3 (yellow), 1/3 (red), and no attributes (black). BinnedCNSMPOscores are plotted along thex-axis, and drug,
candidate, and diverse pool sets are plotted along the y-axis. The number of compounds in each pie is given above the pie graph.
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tool at the drug design stage to help with prioritization
of ideas for compound synthesis, with the ultimate
goal of decreasing the number of design cycles and
accelerating the discovery of new medicines.

Conclusion

Chemical space as defined by physicochemical pro-
perties is limitless, yet there are guiding principles that
medicinal chemists take into considerationwhendesign-
ing druglike compounds (e.g., Lipinski’s Rule of Five).

As part of our efforts in Neuroscience medicinal chem-
istry, we became interested in developing amore sophis-
ticated understanding of the fundamental physico-
chemical properties that endow a compound with desir-
able druglike attributes. We developed a simple new
multiparameter optimization design tool (CNS MPO)
based on a set of physicochemical properties commonly
used by medicinal chemists, with the goals of enabling
greater flexibility in CNS compound design beyond the
use of single parameters or hard cutoffs, expanding

Figure 10. The CNSMPO algorithm expands design space while maintaining alignment of desired attributes. Plots display the distribution of
compounds from the diverse set that possess full alignment ofADMEproperties against each of six physicochemical properties (ClogP, ClogD,
TPSA,MW,HBD, pKa) in relationship to their CNSMPOdesirability scores. Orange lines represent potential hard cutoffs, where hard cutoffs
in this example were defined by the CNS MPO optimal property values, for each of the physicochemical properties: ClogP= 3; ClogD= 2;
TPSA, high value = 90 Å2 and low value = 40 Å2; MW = 360; HBD = 0.5; and pKa = 8.
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design space, and enhancing the odds of identifying
compounds with higher probability of success. Ultima-
tely, it was envisioned that such a design tool, together
with other design principles (avoidance of toxicophores/
structural alerts), could be used prospectively by medi-
cinal chemists to decrease the number of design cycles
and accelerate identification of candidates with en-
hanced survival.

This new CNSMPO algorithm was based on a set of
six fundamental physicochemical parameters (ClogP,
ClogD,MW, TPSA, HBD, and pKa) and a variation of
Harrington’s optimization method. All physicochemi-
cal properties were weighted equally, with a desirability
score ranging from 0.0 to 1.0 for each property and a
total CNS MPO desirability score ranging from 0.0 to
6.0. For each function represented by a physicochemical
property, a series of inflection pointswere identified that
defined optimal, less optimal, and undesirable ranges
for CNS agents. While these six parameters are inter-
related and there is a perceptible overweighting of
lipophilicity (ClogP and ClogD) and pKa (ClogD and
pKa), we believe that each parameter has unique char-
acteristics. The success of this algorithm in predicting
desirable attributes demonstrated that our assumptions
were reasonable. Variations in the number or weighting
of properties did not lead to a more predictive algo-
rithm. The simplicity of the CNS MPO tool makes it
easy to implement using common software such as
Excel. Table 4 is based on an active table, available
online, that will allow rapid calculation of a CNSMPO
score.

In order to understand the potential of the new CNS
MPOalgorithmas adesign tool, itwas applied toa setof
marketed CNS drugs (N = 119) and Pfizer CNS
candidates (N = 108). Our analysis showed that 74%
of marketed CNS drugs were characterized by a high
MPO score (MPO desirability scoreg 4) in comparison
to 60% of the Pfizer CNS candidates, suggesting that
this algorithm could potentially be used to identify
compounds with a higher probability of success. Our
analysis also indicated that as the CNSMPO desirabil-
ity scores increased, so did the odds of identifying
compounds with desirable in vitro ADME and safety
attributes as well as compounds where such attributes
were aligned in one molecule. For example, 91-96% of
the compounds in the drug set with CNS MPO scores
>5 displayed high passive permeability, low P-gp liabi-
lity, favorable metabolic stability, and high cellular
viability, and 77% of the drugs with CNS MPO desir-
ability scores of >5 showed full alignment of all three
ADME attributes in one molecule. In our preceding
paper, we showed that CNS drugs displayed a high
alignment of key attributes, reinforcing the potential
utility of the CNS MPO algorithm in increasing the
probability of identifying compounds with enhanced

survival. Our analysis thus indicates that the CNSMPO
algorithm can identify compounds with aligned attri-
butes and that the probability of identifying such com-
pounds increaseswith increasingCNSMPOdesirability
scores.

While our efforts to develop anMPO algorithmwere
undertaken to prosecute the Neuroscience portfolio, we
were also interested in understanding the general utility
of such analgorithm.We evaluated a largepool ofPfizer
compounds, consisting of 11 303 compounds that
extensively covered property space. Similar trends to
those observedwith theCNSdrugs and candidates were
seen with the diverse pool set; that is, as the CNSMPO
desirability scores increased so did the probability of
identifying compounds with the desired in vitro ADME
and safety attributes aligned in one molecule. These
results reinforce the potential general utility of the CNS
MPO tool across therapeutic areas beyond Neu-
roscience. While some physicochemical properties and
inflection points are related to CNS penetration, the
algorithm is not intended to be used purely as a pre-
dictor of CNS penetration. On the contrary, our analy-
sis shows that the CNS MPO tool may find utility in
other therapeutic areas as is or with appropriate mod-
ification of the function or inflection points. For exam-
ple, if a therapeutic area wanted to restrict CNS
penetration while maintaining druglike attributes, the
following optimal inflection points could be shifted to
higher values: HBD, MW, and TPSA.

Our work also demonstrates that the CNS MPO
algorithmoffers advantages over hard cutoffs or utiliza-
tion of single parameters to optimize structure-activity
relationships (SAR) by providing flexibility in design
and expanding medicinal chemistry design space
through a holistic assessment approach. First, the
CNS MPO provides a method to balance multiple
variables without the penalty of strict cutoffs, because
there are countless ways to arrive at a similar score. This

Table 4. Active CNS MPO Calculatora

aAccess the active table online.
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is nicely illustrated by the three CNS candidates char-
acterized in Table 3, the H3 antagonist and the PDE9
and PDE10 inhibitors. All of these candidates display
CNS MPO desirability scores >4.5, yet they arrive at
the high CNS MPO scores in very different ways. This
flexibility is very important as we learn how to prospec-
tively design for successful CNS drugs in the higher risk
space (ClogP > 3, TPSA< 75 Å2) as well as the lower
risk space (ClogP<3, TPSA>75 Å2) while preserving
CNSpenetration (e.g., PDE9 candidate, ClogP=-1.5,
TPSA = 101.9). Second, the CNS MPO tool provides
an advantage over the use of single parameters, which
typically do not address all desired attributes. While
ClogP is a powerful design parameter and reducing
ClogP has been reported to improve metabolic stability
and safety outcomes, this single property falls short of
aligning all desired attributes in one molecule. For
example, our analysis of a diverse set of Pfizer com-
pounds revealed that there is little correlation between
lowering ClogP and reducing P-gp efflux liability. As
such, a single parameter may not simultaneously
address multiple attributes, reinforcing the need to
leverage multiple physicochemical properties to drive
the right balance of ADME and safety properties in one
molecule. Finally, the CNS MPO algorithm enables
the identification of compounds with aligned desired
attributes while expanding design space. As shown
in Figure 10, as the CNS MPO desirability scores
increased, the density of compoundswith full alignment
of ADME attributes also increased. If hard cutoffs for
one or several of the physicochemical properties had
been applied at the design stage, numerous desirable
compounds would have been eliminated from consi-
deration, resulting in significant lost opportunity and
undue hardship in design. As an example, if only
compounds with a ClogP e 3 had been considered as
part of the design criteria, approximately 30% (843
compounds) of the compounds with full ADME align-
ment would have not been synthesized.

It is important to emphasize that while the overall
composite CNS MPO score is important, individual
property desirability scores are equally valuable, be-
cause they highlight potential specific problems a com-
poundmay encounter. For example, if a compound has
nonoptimal ClogP scores, amedicinal chemist would be
alerted to the potential increased risk for bothmetabolic
liability and safety issues for that compound and could
work to optimize both the holistic and individual scores
asnecessary.Ultimately,medicinal chemistsmust utilize
all available tools together with their judgment and
experience to prioritize and make final decisions on
design ideas.

In summary, the CNS MPO algorithm provides a
holistic assessment of druglike ADME and safety attri-
butes associated with a compound, and it improves the

odds of identifying compounds with such attributes
aligned in one molecule. The CNS MPO algorithm
creates flexibility in design and expands design space,
offering advantages over the use of single parameters or
hard cutoffs for single or multiple parameters. We
believe the algorithmwill provide a new way of evaluat-
ing design ideas, impact prioritization and triage of
high-throughput screening hits, and facilitate the assess-
ment of competitive intelligence in patent and literature
databases. The CNS MPO algorithm is a probabilistic
tool with user-defined functions and optimal ranges
that, together with other concepts, could be used pro-
spectively in design to reduce the number of design
cycles and speed the identification of compounds with
enhanced survival.

Methods

Desirability Functions and MPO Score Calculation
A variant of Harrington’s optimization method, using a

summation of the individual components to yield a composite
desirability score, was developed. Each component of the
desirability function is a transformed function, defined by a
series of inflection points defining the desirable region and
undesirable region(s) of properties (x variable) with a certain
desirability score (y variable) as shown in Figure 3. For
example, a monotonic decreasing function is defined by a
desirable region if the property x e x1 and an undesirable
region for x > x2 (Figure 3A). A linear transformation is
applied between the two inflection points (x1 < x e x2).
Similarly, a hump function is defined by two undesirable
regions and one desirable region, with linear transformation
between the inflection points (Figure 3B). In general, when a
desirability component is defined by inflection points of (x1,
y1), (x2, y2), ..., (xn, yn), assuming x1<x2<...<xn, the score at
the attribute x is determined by the piecewise linear function:

TðxÞ ¼
y1 for x e x1

yi-1 þ ðyi -yi-1Þ
ðxi -xi-1Þðx-xi-1Þ for xi-1 < x e xi

yn for x > xn

8>><
>>:

ð1Þ
Once each component function is built, the overall desir-

ability ofM variables is the sumof each component as defined
in eq 2 where wk is the weighting factor for attribute k (21):

D ¼
XM
k¼1

wkTkðx0kÞ ð2Þ

The CNS MPO score was built based on six fundamental
physicochemical properties: ClogP, ClogD, MW, TPSA,
HBD, and pKa. A monotonic decreasing function was used
for ClogP, ClogD,MW,HBD, and pKa, and a hump function
was used for TPSA. All physicochemical properties were
weighted equally, with a desirability score ranging from 0.0
to1.0 for eachproperty.Themost desirable and least desirable
ranges for each physicochemical property are listed inTable 1.
Transformedvalues (T0) of the six propertiesweredetermined
for each compound, and the summation of the transformed



r 2010 American Chemical Society 448 DOI: 10.1021/cn100008c |ACS Chem. Neurosci. (2010), 1, 435–449

pubs.acs.org/acschemicalneuroscience Article

component score yielded the final “CNS MPO” desirability
score, which can range from zero (0) to six (6). For each
physicochemical property, the inflection points that define
optimal, less optimal, and undesirable ranges were selected
based on the authors’ medicinal chemistry experience
(Figure 5). The inflectionpoint selectionswere validated using
knowledge of property distribution space for CNS drugs
highlighted in the preceding publication (8) and other litera-
ture sources referenced above.

For theworkherein, calculatedphysicochemical properties
were obtained using standard commercial packages: Biobyte
for ClogP calculations, ACD/Laboratories for ClogD at pH
7.4, and ACD/Laboratories for pKa. For calculation of
TPSA, see ref 9. Statistical analyses were carried out using
SAS JMP 7 statistical software (22), and the data was
visualized with JMP or Spotfire Decision Site (23).

ADME Data
Data on the following in vitro ADME properties were

generated in-house utilizing the following high-throughput
assays: (a) passive apparent permeability,Papp, assayed utiliz-
ing the Madin--Darby canine kidney (MDCK) cell line (10);
(b) P-glycoprotein (P-gp) efflux liability, assessed via an assay
utilizing the MDCK-MDR1 cell line, an MDCK line stably
transfected with theMDR1 gene that expresses a functionally
active human P-gp (10); (c) metabolic stability, expressed as
unbound intrinsic clearance (CLint,u), calculated according to
eq 3 (11) using the measured intrinsic clearance (CLint),
obtained via an in vitro, high-throughput human liver micro-
some assay, and an in silicomodel for freemicrosome fraction
(cFu,mic) (12):

CLint, u ¼ CLint

cFu,mic
ð3Þ

Compounds included in these studies were handled as
30 mM stock solutions generated, dispensed, and checked
for purity by Pfizer’s internal sample bank and subsequently
assayed in the ADME and safety assays. The data generated
from these assays for the drugs and candidates are included in
the previous publication (8). The same in vitro assays and in
silico tool (cFu,mic) were used to generate data for the Pfizer
proprietary diverse pool set.

Safety Data
Data for the following in vitro safety end points were

generated in house via high-throughput assays according to
reportedmethods: (a) Cell viability,measured as activity in an
in vitro cellular toxicity assay as a surrogate for acute in vivo
toxicity (24). The cellular toxicity data was generated using a
transformed human liver epithelial cell line where ATP levels
were detected using a bioluminescent end point (8). This assay
utilized luciferase to catalyze the formation of light fromATP
and luciferin. (b) hERG liability, assessed via inhibition of
dofetilide binding (20) as a surrogate indicator of hERG
potassium ion channel effects (blocking of hERG may result
in prolongation of the QT interval of cardiac rhythm (25)).
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